ANESTHESIA FOR ARTHROSCOPIC SHOULDER SURGERY IN THE BEACH CHAIR POSITION: MONITORING OF CEREBRAL OXYGENATION USING COMBINED BISPECTRAL INDEX AND NEAR-INFRARED SPECTROSCOPY

HIROAKI KAWANO* AND TOMOMI MATSUMOTO**

Abstract

Recent research has shown that cerebrovascular complications following shoulder surgery performed in the beach chair position under general anesthesia arise secondary to cerebral ischemia. Appropriate management of cerebral oxygenation is thus one of the primary goals of anesthetic management during such procedures. The present report describes the case of a 65-year-old male patient, in which both bispectral index (BIS) and near-infrared spectroscopy (NIRS) were used to monitor cerebral oxygenation. During the positioning, we observed an increased suppression ratio (SR) while BIS and regional cerebral oxygen saturation (rSO₂) were at adequate level. In view of the difference in blood pressure between the heart and the base of the brain, blood pressure was maintained to ensure adequate cerebral perfusion. Although intraoperative rSO₂ was at or around the cut-off point (a 12% relative decrease from baseline), no marked decrease in BIS or further increase in the SR was observed. Monitoring of cerebral perfusion using combined BIS and NIRS optimized anesthetic management during the performance of arthroscopic shoulder surgery in the beach chair position.

Key words: General anesthesia, Beach chair position, Cerebral oxygenation, Bispectral index, Near-infrared spectroscopy.

Introduction

Several reports have described serious complications secondary to general anesthesia for shoulder surgery performed in the beach chair position1,2. Recent research has identified a causal relationship between the beach chair position and cerebral hypoperfusion3,4, and it is widely accepted that the beach chair position may be associated with a decrease in cerebral perfusion5,6.

The present report describes optimal management of cerebral oxygenation during arthroscopic shoulder surgery performed in the beach chair position. This involved the monitoring of cerebral oxygenation using a combination of bispectral index (BIS) and near-infrared spectroscopy (NIRS).
Case report

The 65-year-old male patient (166 cm, 67 kg) was admitted to our hospital for arthroscopic shoulder surgery. He had undergone arthroscopic rotator cuff repair in the lateral decubitus position 7 months before, but his symptoms had not improved. During the initial procedure, intraoperative monitoring included electrocardiography, noninvasive blood pressure monitoring, capnography and pulse oximetry, and the anesthetic management was successful with no complications. His medical history included insulin-dependent diabetes mellitus, hypertension and congestive heart failure.

No preanesthetic medication was administered prior to the arthroscopic procedure. On arrival in the operating room, his blood pressure was 161/72 mmHg, his heart rate was 68 beats/min, and his arterial oxygen saturation was 98% on room air. The patient was monitored with electrocardiography, capnography, and pulse oximetry. In addition to these routine monitoring procedures, an arterial catheter was inserted into the left radial artery to allow invasive blood pressure monitoring, and BIS monitoring was applied. At the same time, regional cerebral oxygen saturation (rSO₂) was measured using NIRS (INVOS 5100C; Covidien, Boulder, CO, USA). Throughout the procedure, the rSO₂ was recorded from the left (LrSO₂) and the right (RrSO₂) hemispheres using two probes, which were positioned on the left and right sides of the forehead respectively. Prior to induction, the LrSO₂ and RrSO₂ were 59% and 51%, respectively (baseline values). General anesthesia was induced with intravenous remifentanil (0.5 µg/kg/min), propofol (70 mg), and rocuronium (40 mg), and endotracheal intubation was performed. The patient was then placed in the beach chair position. The external auditory meatus, which represents the base of the brain, was positioned 40 cm above the atrial level. Thus, it was calculated that the blood pressure at the base of the brain would be approximately 30 mmHg lower than at the arm. To maintain the mean arterial pressure (MAP) above 80 mmHg, a continuous infusion of intravenous dopamine (2-5 µg/kg/min) was administered. In addition, all episodes of hypotension (defined as MAP< 80 mmHg) were treated with intravenous ephedrine (4 mg) or phenylephrine (0.1 mg). Anesthesia was maintained with oxygen (2 l/min), air (2 l/min), sevoflurane (1.0%), and remifentanil (0.2-0.3 µg/kg/min). Neuromuscular blockade was maintained with intermittent rocuronium. As postoperative analgesia, approximately 60 min before the end of the procedure, intravenous fentanyl (200 µg) was administered, and intravenous patient-controlled analgesia infusion (fentanyl 20 µg/ml; basal infusion 1 ml/h, bolus 1 ml, lockout time 10 min) was started.

In response to anesthetic induction, MAP decreased from 108 to 59 mmHg, which resulted in an increase of the suppression ratio (SR) to 19. At this point, the BIS and rSO₂ were stable. With intravenous administration of ephedrine (4mg), the MAP increased and the SR returned to 8. After the patient was placed in the beach chair position, the SR rapidly increased to 21. BIS and rSO₂ were in the 40-50 and 45-50 ranges, respectively, and signal quality index was more than 75%. The patient’s MAP was 70 mmHg. This was treated with intravenous administration of ephedrine (8 mg), and the SR improved (Fig. 1). Thereafter, there was no further increase in the SR. The intraoperative systolic blood pressure was 90-160 mmHg, the MAP was 70-110 mmHg, the heart rate was 50-70 beats/min, and the end-tidal CO₂ was 35-40 mmHg. The total dose of ephedrine was 40 mg and that of phenylephrine was 0.5 mg. The BIS was stable at between 40 and 60, and there were no episodes of any marked decrease in BIS. The LrSO₂ was stable at around 52% (range 50-54%), and the RrSO₂ was also stable at around 52% (range 50-53%). Surgery was completed without complications, and the patient emerged from anesthesia uneventfully. Once the patient had regained consciousness and was able to follow simple commands, the neuromuscular blockade was reversed and his trachea was extubated. The duration of the surgical procedure and anesthesia was 8 h:11 min and 9 h:40 min, respectively. Intraoperative total blood loss was 250 ml, urine output was 1450 ml and total infusion volume was 1750 ml. The patient remained stable during the 1-month inpatient postoperative period, and no postoperative complications were evident.
Discussion

The beach chair position (30-90° above the horizontal plane) is widely used for orthopedic shoulder arthroscopy procedures as it offers advantages such as excellent intraarticular visualization and reduced brachial plexus strain. Although Tange et al.\textsuperscript{7} reported that the use of the beach chair position under general anesthesia did not alter cerebral oxygenation, several studies have reported a causal relationship between the beach chair position and cerebral hypoperfusion\textsuperscript{3,4}. According to a report by Murphy et al.\textsuperscript{3}, shoulder surgery in the beach chair position was associated with a significant reduction in cerebral oxygenation compared with the use of the lateral decubitus position. Therefore, maintenance of adequate cerebral perfusion should be ensured during shoulder surgery performed in the beach chair position, even in healthy patients who are not at increased risk of ischemic stroke. Strict cerebral oximetry monitoring was necessary in the present case, as the patient was at high risk of cerebrovascular events.

The BIS is widely used as an indicator of the level of consciousness during general anesthesia. In addition, several reports have suggested that the BIS allows detection of cerebral ischemia\textsuperscript{8,9}, since cerebral hypoperfusion decreases the BIS. Hayashida et al.\textsuperscript{9} described five children in whom 14 episodes of a simultaneous decreases in rSO\textsubscript{2} and BIS occurred during episodes of acute hypotension within the course of cardiac surgery. In these patients, abrupt decreases in BIS in their patients associated with an acute slowing of the electroencephalogram (EEG), which is an early indication of cerebral hypoperfusion. In the present case, no marked reduction in BIS, a sign which may suggest cerebral hypoperfusion, was observed during the procedure.

In the present case, the SR increased to 21 following change of position from supine to beach chair position, while BIS and rSO\textsubscript{2} were in a normal range. This is similar to previously reported cases where an increased SR was observed despite BIS values at an adequate anesthetic level and the possible role of hypoxemia was suggested\textsuperscript{10,11}. SR derived from BIS monitoring estimates the percentage of burst suppression EEG pattern or isoelectric activity. It occurs during deep anesthesia, but several reports suggest that SR could be related to hemodynamics\textsuperscript{12} or metabolism such as hypothermia\textsuperscript{13} or hypoxia\textsuperscript{10}. A causal relationship between SR and cerebral hypoxemia has been suggested in animal studies\textsuperscript{14}. Furthermore, it has been shown that the presence of SR in critically ill patients was associated with increased mortality\textsuperscript{15}. Therefore, although it is obvious that BIS monitor is not designed to detect cerebral ischemia, it might be useful for detecting cerebral hypoperfusion. Because MAP decreased from 108 to 59 mmHg in response to anesthetic induction,

![Fig. 1](image)

Changes in regional cerebral oxygen saturation (rSO\textsubscript{2}), mean arterial pressure (MAP), bispectral index (BIS), and suppression ratio (SR) during the anesthetic procedure. During the positioning, an increased SR was observed while BIS and rSO\textsubscript{2} were in a normal range. Although intraoperative rSO\textsubscript{2} was at or around the cut-off point, no marked decrease in BIS or further increase in the SR was observed. A, tracheal intubation; B, beach chair position; C, start of operation
and because hypoxia, hypocapnia, and anemia, all of which might cause cerebral hypoperfusion, were not present, the first episode of SR increase was thought to be due to hypotension. However, the second episode of SR increase in the present case may have been related to cerebral hypoperfusion associated with the beach chair position. It is well recognized that the beach chair position may be associated with a decrease in cerebral perfusion as mentioned above. In our patient, an elevation of the SR was a useful sign for the detection of the beach chair position-related cerebral hypoperfusion.

NIRS is a noninvasive technique for the continuous monitoring of rSO₂, and it has been used to detect cerebral ischemia and hypoxia in patients undergoing procedures such as cardiovascular surgery and carotid endarterectomy (CEA). Although various studies have investigated the optimal cut-off point for a decrease in rSO₂ in order to identify the occurrence of neurological complications in patients undergoing CEA¹⁶,¹⁷, the rSO₂ threshold indicating cerebral ischemia ranges from a 12-20% relative decrease. It may therefore be difficult to judge whether pharmacological or physiological intervention is required when the rSO₂ is at or around the cut-off point like the present case. Furthermore, it has been shown that EEG and somatosensory evoked potentials (SEP) correlate directly with changes in cerebral blood flow, whereas no such data related to rSO₂ are currently available. Therefore relying on rSO₂ alone to monitor the adequacy of cerebral perfusion might be dangerous and inadequate in terms of avoiding neurological complications. Consequently, both BIS and rSO₂ were measured with NIRS. Hayashida et al.¹⁸ reported that the combination of BIS and NIRS can be a convenient method of ischemic/anesthetic monitoring, i.e., that by monitoring both BIS and NIRS, it is possible to judge whether cerebral hypoperfusion, as indicated by a decrease in rSO₂, is at the saturation level at which cerebral dysfunction will occur.

In conclusion, appropriate management of cerebral oxygenation is essential during any surgical procedure performed in the beach chair position. We recommend the use of cerebral oximetry monitoring devices. In the present case, monitoring of cerebral oxygenation using a combination of BIS and NIRS optimized anesthetic management during the performance of shoulder surgery in the beach chair position.

Conflict of interest
None.

Funding
None.

Acknowledgments
Published with the written consent of the patient.
References


5. CULLEN DJ, KIRBY RR: Beach chair position may decrease cerebral perfusion: Catastrophic outcomes have occurred. APSF Newsletter; 2007, 22:25-27.


The key to

Lock-up

Postoperative Pain

**STEP I**

Initial bolus

Inject 1 ampoule Tramal® 100 mg i.v. or i.m. slowly over 2-3 minutes

**STEP II**

Ways of administration after initial bolus

Infusion

Inject 2 ampoules Tramal®, each 100 mg, in 500ml of infusion solution. Infusion rate 12-24 mg Tramal®/h (16-20 drops/min or 30-60 ml/h)

Subsequent increments of 25 mg with a lock-out time of 5 minutes.

If needed further doses of Tramal® 50 mg up to a total of 200 mg (excluding the initial bolus) within the first 60 min.

**STEP III**

Follow-up

1-2 capsules every 4-6 hours

50 mg

20-40 drops every 4-6 hours

100 mg

1 suppository every 4-6 hours

slow release

0 mg, 150 mg, 200 mg

1 tablet every 12 hours

Intra-Operative

Loading Dose

2.5 - 3 mg/kg at wound closure

Post-Anaesthesia Care Unit

If intra-operative dose not given then:

BOLUS I.V.*

100 mg over 2-3 mins

An intra-operative loading dose of Tramal® will reduce PONV rates

*If needed further doses of 50 mg up to a total of 200 mg (incl. the initial bolus) may be given within the first 60 min.

---

For patients with localized

BURNING

SHOOTING

STABBING

Neuropathic pain

WORKS WHERE IT HURTS
BRIDION—optimal neuromuscular blockade management and improved recovery

Predictable and complete reversal
- 98% of BRIDION patients recovered to a TOF ratio of 0.9 from reappearance of $T_2$ within 5 minutes
- 97% of BRIDION patients recovered to a TOF ratio of 0.9 from 1 to 2 PTCs within 5 minutes

Rapid reversal
- BRIDION rapidly reversed patients from reappearance of $T_2$ in 1.4 minutes
- BRIDION rapidly reversed patients from 1 to 2 PTCs in 2.7 minutes

BRIDION is indicated for the reversal of neuromuscular blockade induced by rocuronium or vecuronium. In children and adolescents (aged 2-17 years), BRIDION is only recommended for routine reversal of moderate rocuronium-induced neuromuscular blockade.

Important safety information
BRIDION is not recommended in patients with severe renal impairment. Studies in patients with hepatic impairment have not been conducted, and therefore, patients with severe hepatic impairment should be treated with great caution. Carers should be informed that BRIDION is not recommended in patients with renal impairment or hepatic impairment.

BRIDION has not been investigated in patients receiving succinylcholine or vecuronium in the intensive care unit (ICU) setting.

If neuromuscular blockade is required within 24 hours of BRIDION administration, a nondepolarizing neuromuscular blocking agent should be used instead of succinylcholine. Do not use succinylcholine within 24 hours of BRIDION administration. The most commonly reported adverse reactions were dysgeusia (metal or bitter taste) and asthenia (fatigue, weakness, or lack of energy). In patients treated with BRIDION, a few cases of awareness were reported. This relates to BRIDION use alone, in a few individuals, allergic-like reactions (e.g., flushing, urticaria, rash) following BRIDION were reported. Patients should be monitored for the possibility of allergic reactions and take appropriate precautions. If a reaction occurs or if a patient complains of rash, wheezing, or difficulty breathing, the infusion should be stopped, and the patient should be treated accordingly. In patients treated with BRIDION, a few cases of awareness were reported. This relates to BRIDION use alone, in a few individuals, allergic-like reactions (e.g., flushing, urticaria, rash) following BRIDION were reported.

Volunteer studies have demonstrated a slight (10-20%) prolongation of the proximal twitch and partial reversal of the blockade (5-10%) with BRIDION alone. However, clinical studies have demonstrated clinically relevant effects on postoperative recovery. Clinical studies with BRIDION have demonstrated a significant improvement in postoperative recovery. Clinical studies with BRIDION have demonstrated a significant improvement in postoperative recovery.

For patients undergoing procedures requiring monitoring of neuromuscular function, a continuous neuromuscular monitoring device should be used to detect and record the TOF ratio and response to the test dose. TOF ratio should be maintained above 0.7 or 0.8, whichever is higher, to ensure safe reversal.

*Some of the references are included at the bottom of the page.

Please see summary of product characteristics for full prescribing information.
PAJUNK® Pioneering Medical Tehnology

TAP Block And InfiltraLong
For Effective Treatment
Of Long And Deep Incisions

Sono Cannulas
For Single Shot UltraSound
Guided Nerve Blocks

SonoSystem And SonoLong Curl
For UltraSound Guided Nerve Blocks

Sprotte® 2.G
The New Generation
Dura Puncture In Minimum Time

SonoEye Orbital Block
For Peribulbar And Retrobulbar
Blocks Under Ultrasonic Monitoring

www.mediline-lb.com  Tel:+961 1 697500