CASE REPORTS

STRAIGHT TO VIDEO: TONSILLAR INJURY DURING ELECTIVE GLIDESCOPE®-ASSISTED PEDIATRIC INTUBATION

JASON D. RODNEY*, ZULFIQAR AHMED*, DEEPAK GUPTA*, and MARIA MARKAKIS ZESTOS*

Abstract

Airway management in pediatric patients presenting for tonsillectomy and adenoidectomy may prove challenging given the enlarged upper airway structures. Video Laryngoscopy (VL) can be very helpful but it does not come without risks. In this case report, we report an unfavorable outcome of VL in a pediatric patient with adenotonsillar hypertrophy.

Introduction

Airway management in pediatric patients presenting for tonsillectomy and adenoidectomy may prove challenging given the enlarged upper airway structures. Video Laryngoscopy (VL) as a modality of airway instrumentation has the potential to facilitate an unobstructed view of the vocal cords in situations where the oral, pharyngeal and laryngeal axes are difficult to align. Such may be the case due to body habitus, trauma or neoplasm, among other indications. For this reason, VL is an important tool in the anesthesiologist’s armamentarium. It has been suggested that VL has earned a place high up in an algorithm for dealing with a difficult airway, particularly in a “can’t intubate/can’t ventilate” patient scenario1-3. VL may also be considered in patients where minimizing the force required during laryngoscopy is desirable such as a patient with loose teeth. Even though VL can be very helpful, it does not come without risks. There have been numerous case reports describing injury to various oropharyngeal structures. Hereby, we report an unfavorable outcome of VL in a pediatric patient with adenotonsillar hypertrophy undergoing tonsillectomy and adenoidectomy.

Case Presentation

A 6-year old female with comorbidities of sickle cell disease and a history of numerous blood transfusions presented for elective tonsillectomy-adenoidectomy due to obstructive sleep apnea. Preoperative airway examination revealed Mallampati Class I with full range of neck

* MD.

Corresponding author: Maria Markakis Zestos, MD, Chief of Anesthesiology, Children’s Hospital of Michigan, Associate Professor, Wayne State University, 3901 Beaubien St, Suite 3B-17, Detroit Michigan 48201, United States. Office: 1-313-745-5535, Fax: 1-313-745-5448. E-mail: mzestos@med.wayne.edu
and jaw mobility, adequate thyro-mental distance, and as expected, enlarged tonsils. In addition to tonsillar hypertrophy, it was noted that the patient had loose upper incisors about which the parent was very concerned. The anesthesia team decided to use GlideScope® Cobalt AVL for endotracheal intubation in an effort to avoid inadvertent pressure or traction on the loose teeth.

After the induction of anesthesia, endotracheal intubation was attempted by the anesthesiology resident with the GlideScope®. A Cormack Lehane grade I laryngoscopic view was easily achieved with a size 2 GlideScope® blade. A 6.0 internal diameter (ID) oral RAE endotracheal tube, without stylet, was unsuccessfully introduced to the oropharynx. The rigid GlideRite® stylet was not used during the initial attempts to pass the endotracheal tube because when inserted into the endotracheal tube, the tip of the stylet protruded beyond the end of the oral RAE endotracheal tube. The RAE endotracheal tube of ID 6.0 mm was removed, and it was noted that blood was present on the tip of the endotracheal tube.

Mask ventilation was resumed with oxygen and sevoflurane and at this time, it was much more difficult to manually ventilate than during induction despite head-tilt-chin-lift and jaw thrust maneuvers. A subsequent attempt at VL by the supervising anesthesiologist revealed that the tonsils were almost completely obstructing the laryngoscopic view. Further attempts at intubation were withheld, and assistance was sought from the otorhinolaryngology surgical team due to the apparent injury to the enlarged tonsils during the initial intubation attempt.

The examination by the otorhinolaryngologist revealed Brodsky Grade 4+ tonsils with one partially detached tonsil having minimal mucosal bleeding. Endotracheal intubation was achieved by an attending physician with a Miller 2 blade with no observable effect to the loose teeth. At this time, the decision was made to proceed with the tonsillectomy-adenoidectomy as planned. After discussion with the concerned parent, the loose tooth was removed by the attending dentist. The remainder of the peri-operative course was unremarkable.

Discussion

Even though VL has been shown to improve the ability of novices to obtain laryngeal exposure when compared to Direct Laryngoscopy (DL) in adults⁴, there is evidence for and against ease of use with respect to pediatric patients. Fonte et al⁵ demonstrated that pediatric residents, who were unfamiliar with VL, failed at tracheal intubations at a higher rate while using VL than when performing DL with a Miller blade in pediatric patients with a normal airway or tongue edema. Ilies et al⁶ found no difference between an attending physician’s and an experienced resident’s ability to obtain an improved view of vocal cords using VL after DL. Despite a perceived disadvantage to using VL for tracheal intubation by novices, it has been shown that in the hands of experienced anesthesiologists, VL does improve the ability to successfully intubate pediatric patients⁸-¹⁰. VL may prove to be a useful tool in obtaining laryngeal exposure, but there have been numerous reports of injury to various oropharyngeal structures in adults including abrasion, perforation and laceration of tonsils, palatopharyngeal wall, lingual nerve as well as dental injury¹¹-¹⁸. It has been suggested that both the blind insertion and pathway of the endotracheal tube and the rigid stylet may be contributing factors to oropharyngeal injury during VL¹⁹-²⁰.

Although the decision for airway instrument choice was ultimately influenced by the patient’s dentition rather than a perceived difficult airway (even though the loose tooth was eventually removed by a dentist), this case shows one instance wherein use of GlideScope® for pediatric endotracheal intubation may have contributed to more harm than good. Even if the rigid stylet is not used to facilitate intubation, there is an inherent risk of oropharyngeal injury when using the video laryngoscope due to the inability to visualize the endotracheal tube passing from the opening of the mouth to the point where it enters the field of focus of the camera lens.

The Glidescope® has become a popular tool among peri-operative, critical care and emergency room care providers. Few would dispute that it has earned a place in the American Society of Anesthesiologists’ Difficult Airway Algorithm²¹ which
states that providers managing difficult airway should give appropriate considerations to the comparative benefits vs. workability potential of options including VL as the initial intubation attempt. In the presence of a known pharyngeal mass it may be worth considering DL, flexible fiberoptic (FFO) bronchoscope or a combination of VL and FFO used in conjunction as described by Weissbrod and Merati. We would also recommend caution when using the video laryngoscope for educational purposes. Although VL may facilitate both trainer and trainee to visualize the vocal cords in pediatric patients, its use may increase the risk of oropharyngeal injury or failed intubation in inexperienced hands.

Conclusion

In summary, operators’ tendency to direct and focus their attention ‘Straight To Video’ in VL should be cautioned against in order to avoid potential oropharyngeal injuries along the route of blind insertion of the endotracheal tube from the angle of the mouth until it becomes visible on the screen of the VL.
References

2. **Frova G**: Do videolaryngoscopes have a new role in the SIAARTI difficult airway management algorithm? *Minerva Anestesiol*; 2010, 76:637-640.

The key to Lock-up Postoperative Pain

Initial bolus
Inject 1 ampoule Tramal® 100 mg i.v. or i.m. slowly over 2-3 minutes

Ways of administration after initial bolus

- Infusion
- PCA
- Injection

STEP II
Inject 2 ampoules Tramal®, each 100 mg, in 50 mL of infusion solution. Infusion rate 12-24 mg Tramal® (10-20 h) or 50-60 mL/h.

If needed further doses of Tramal® 50 mg up to a total of 200 mg (including the initial bolus) within the first 60 min.

STEP III

Follow-up
- 1-2 capsules every 4-6 hours
- 50 mg
- 20-40 drops every 4-6 hours
- 100 mg
- 1 suppository every 4-6 hours
- slow release 100 mg, 150 mg, 200 mg, 1 tablet every 12 hours

Intra-Operative

Loading Dose
2.5 - 3 mg/kg at wound closure

An inter-operative loading dose of Tramal® will reduce PONV rates

If intra-operative dose not given then:
BOLUS i.v.*
100 mg over 2-3 mins

*If needed further doses of 50 mg up to a total of 200 mg (incl. the initial bolus) may be given within the first 60 min.

GRUNEITHAL
For patients with localized BURNING, SHOOTING, STABBING, Neuropathic pain.

VERSATIS® 5% lidocaine medicated plaster
WORKS WHERE IT HURTS

GRUNENTHAL
BRIDION—**for optimal neuromuscular blockade management** and improved recovery

Predictable and complete reversal

- 98% of BRIDION patients recovered to a TOF* ratio of 0.9 from reappearance of T₂ in 5 minutes²
- 97% of BRIDION patients recovered to a TOF* ratio of 0.9 from 1 to 2 PTCs † within 5 minutes³

Rapid reversal

- BRIDION rapidly reversed patients from reappearance of T₂ in 1.4 minutes²
- BRIDION rapidly reversed patients from 1 to 2 PTCs † in 2.7 minutes³

BRIDION is indicated for the reversal of neuromuscular blockade induced by rocuronium or vecuronium. In children and adolescents (aged 2-17 years), BRIDION is only recommended for routine reversal of moderate rocuronium-induced neuromuscular blockade.

Important safety information

BRIDION is not recommended in patients with severe renal impairment. Studies in patients with hepatic impairment have not been conducted and, therefore, patients with severe hepatic impairment should be treated with great caution. Caution should be exercised when administering BRIDION to pregnant women as no clinical data on exposed pregnancies are available.

BRIDION has not been investigated in patients recovering from rocuronium or vecuronium in the Intensive Care Unit (ICU) setting.

If neuromuscular blockade is required within 24 hours of BRIDION administration, a nonreversal neuromuscular blocking agent should be used instead of rocuronium or vecuronium. The most commonly reported adverse reactions were dysgeusia (metal or bitter taste) and anesthetic complications (movement, coughing, grunting, or sucking on the endotracheal tube). In patients treated with BRIDION, a few cases of awareness were reported. The relation to BRIDION was uncertain. In a few individuals, allergic-like reactions (ie, flushing, erythematous rash) following BRIDION were reported. Clinicians should be prepared for the possibility of allergic reactions and take the necessary precautions. In a trial of patients with a history of pulmonary complications, bronchospasm was reported in 2 patients and a causal relationship could not be fully excluded.

Volunteer studies have demonstrated a slight (13%-22%) and transient (<30 minutes) prolongation of the prothrombin time/activated partial thromboplastin time (PT/aPTT) with BRIDION; however, clinical studies have demonstrated no clinically relevant effect on pre- or postoperative bleeding complications with BRIDION alone or in combination with anticoagulants. As BRIDION has demonstrated an in vitro pharmacodynamic interaction with anticoagulants, caution should be exercised in patients on anticoagulation for a pre-existing or comorbid condition. This pharmacodynamic interaction is not clinically relevant for patients receiving routine postoperative prophylactic anticoagulation. Although formal interaction studies have not been conducted, no drug interactions were observed in clinical trials. Preclinical data suggest that clinically significant drug interactions are unlikely with the possible exceptions of toremifene, fusidic acid, and hormonal contraceptives.

*Train-of-four
†Post-tetanic count
‡Second twitch

REFERENCES:

Please see summary of product characteristics for full prescribing information.
Pioneering Medical Technology

TAP Block And InfiltraLong
For Effective Treatment
Of Long And Deep Incisions

Sono Cannulas
For Single Shot UltraSound
Guided Nerve Blocks

SonoSystem And SonoLong Curl
For UltraSound Guided Nerve Blocks

Sprotte® 2.G
The New Generation
Dura Puncture In Minimum Time

SonoEye Ophtalmic Block
For Peribulbar And Retrobulbar
Blocks Under Ultrasonic Monitoring

www.mediline-lb.com Tel:+961 1 697500