COMBINED BLOCK OF THE FEMORAL AND LATERAL FEMORAL CUTANEOUS NERVES UNDER ULTRASOUND FOR POST-OPERATIVE ANALGESIA IN PATIENTS UNDERGOING HIP SURGERY: A DOUBLE BLIND RANDOMIZED TRIAL

MAROUN BADWI GHABACH¹, JAMIL MARWAN ELMAWIEH², MAY SEMAAN MATTA³ AND MAY RADY HEOU⁴

Background: Inadequate pain management of post-operative pain of patients undergoing hip surgery can result in morbidity and mortality complications. Anatomically, pain resulted from the incision site innervation (Lateral femoral cutaneous nerve) and the hip joint innervation mainly the femoral nerve. Adding femoral nerve blockade to the multimodal regimen for postoperative pain control after hip surgery has been described.

Methods: all 31 patients included in the study received preoperatively combined FN and LFCN block with Normal Saline 0, 9% (group I) or bupivacaine 0.5% (group II) randomly by using a previously generated continuous randomization list kept in a closed envelope. Pain control regimen consisted of Perfalgan 1g IV every 6 hours systematically and Dolosal 50 mg IM every 6 hours if needed (i.e. VAS > 4). Pain level was measured by using Visual Analogue Scale (VAS) for the first 24 hours. Time to the first request of analgesia and the total dose of dolosal were calculated.

Results: The number of patients who requested narcotics was significantly higher in group I (8) than group II (3), P=0.044; the total dose of dolosal used was significantly higher in group I (50 mg) than group II (9,375mg), P=0.0058. Time to the first request for analgesia was significantly lower in group I (6hrs ± 5.12) as compared to Group II (21.3 hrs ± 23.1), P=0.043.

Conclusion: In conclusion, FN and LFCN block when added to the standard regimen for postoperative pain management after hip surgery had a benefit in decreasing pain scores as well as opioid consumption.

Keywords: Femoral Nerve, Lateral Femoral Cutaneous Nerve, Nerve Block, Postoperative Analgesia, Ultrasound.

¹ M.D: Associate Professor, Department of Anesthesia and Reanimation, Lebanese University, Faculty of Medical Sciences, Beirut, Lebanon. Chairman of Anesthesia Department, Rosary Sisters Hospital.
² Resident of Anesthesia, Department of Anesthesia and Reanimation, Lebanese University, Faculty of Medical Sciences, Beirut, Lebanon.
³ Anesthesiologist, Department of Anesthesia, Rosary Sisters Hospital, Beirut, Lebanon.
⁴ Associate Professor, Chairman Department of Anesthesia and Reanimation, Lebanese University, Faculty of Medical Sciences, Beirut, Lebanon.

This clinical study is attributed to the Department of Anesthesia at the Lebanese University, Faculty of Medical Sciences.

Corresponding author: Maroun Badwi Ghabach, M.D, Associate Professor, Department of Anesthesia and Reanimation, Chairman of Anesthesia Department Rosary Sisters Hospital. Gemayze, Beirut, Lebanon, P.O. Box: 175-272, Tel: 00961-(0)-581140. E-mail: maroun_ghabash@yahoo.com

Conflict of interest: None of the authors declare any personal, professional or business conflict of interest.
Introduction

Post-operative pain of hip surgery is a significant issue; it affects early mobilization, joint range of motion and length of hospital stay\(^1\). An inadequate pain management can lead to secondary medical morbidities as venous thromboembolism and cardiac events\(^1-3\).

Post-operative analgesia, depending on the institution regimen for pain treatment, is either parenteral opioids, epidural or multimodal analgesia with or without peripheral nerve block\(^4\). Opioids provide efficient pain relief but are associated with serious side effects especially in the elderly including respiratory depression, sedation, hallucination, nausea, bladder dysfunction and pruritus\(^5\). Epidural analgesia is efficient but also had side effects including hypotension, bladder dysfunction and epidural hematoma\(^6\). Femoral nerve, lumbar plexus and fascia iliaca blocks had been demonstrated to improve pain scores and to reduce morphine consumption in the post-operative period. Posterior lumbar plexus block is more effective than femoral nerve block\(^7\) but its use is limited because of more serious complications as epidural hematoma, total spinal, renal puncture and others\(^8\). The clinical success rate of fascia iliaca block is variable due to highly variable anatomical course of the lateral femoral cutaneous nerve besides the need of high volume of local anesthetic\(^9\).

In our study we tested the hypothesis that a combined block of the femoral nerve (FN) and lateral femoral cutaneous nerve (LFCN) under ultrasound preoperatively has a positive impact on the post-operative analgesia. The end-point was the decrease in the percentage of patient who rescue narcotics in the first 24 hours period post-operatively and the total dose of narcotics needed.

Patients and Methods

The clinical study was performed after receiving institutional review board and informed consent from the patients. Thirty one consecutive patients scheduled for unilateral hip arthroplasty or osteosynthesis between September 1\(^{st}\) and December 30\(^{th}\) 2014, were included in the study. Inclusion criteria were age above 18 years, ASA I-III, and weight above 50 kg. Exclusion criteria were peripheral neuropathy, communication failure, bleeding disorders, allergy to local anesthetics, and use of chronic pain medications.

The surgical procedure was performed with a standardized spinal anesthesia regimen. The patients presented to the operating room without premedication. The monitoring consisted of noninvasive blood pressure measurements, electrocardiography, pulse oximetry, and qualitative ETCO2. An infusion of Ringer’s solution was started, O2 was supplied via a face mask (6L/min) and 5 µg sufentanil (Janssen-Cilag, Switzerland) was given intravenously. All patients received combined FN and LFCN block with Normal Saline 0, 9% (group I) or bupivacaine 0.5% (group II) randomly by using a previously generated continuous randomization list kept in a closed envelope. This envelope handed to an anesthesia technician not involved in the study who prepared identical syringes either containing 20 mL of NaCl 0.9% or 20 mL of bupivacaine (Astra-Zeneca, USA) 0.5% according to the randomization number on the list. In the supine position and at the side of surgery, the block area was disinfected. With a linear array probe (4-12 MHZ, GE LOGIC e ultrasound), the FN block was performed at the inguinal cease level, the LFCN blocked immediately inferior to the anterior superior iliac spine. 15 mL of the solution (bupivacaine or NaCl 0.9%) were injected around the FN, while 5mL around the LFCN. Standard spinal anesthesia was then performed to all patients in the sitting position by intrathecal injection of 13 mg of heavy bupivacaine 0.5% at the L3-L4 or L4-L5 level. Postoperatively, pain level was measured by using Visual Analogue Scale (VAS), no pain = 0 and worst pain = 10, at rest and at lower limb spontaneous movement of the operated side every six hours after spinal anesthesia has resolved (spontaneous lower limb movement in the recovery room) for the first 24 hours (H0, H6, H12, H18, H24). Pain control regimen consisted of Perfalgan 1g IV every 6 hours systematically and Dolosal 50 mg IM every 6 hours if needed (i.e. VAS > 4). Time to the first request of analgesia, and the total dose of dolosal used for every patient in the first 24 hours postoperatively were calculated. Demographic data were collected for all patients including age, sex, physical status classification according to the American Society of Anesthesiologists (ASA), type of
surgery and operative time.

Main postoperative anesthesia related complications including nausea, vomiting and drowsiness were measured.

Parametric variables were described as ± SD, qualitative variables were described as number (percentage) and as median range. Student’s t-test, chi square test or Fisher exact test was used as appropriate to compare the two groups. P < 0.05 was considered statistically significant.

Results

Demographic according to the patient age, sex, ASA physical status, operating time and type of surgery were not significantly different between the two groups (Table 1), as well as postoperative anesthesia related complications (Table 2).

In the first 24 hours postoperatively: The number of patients who requested narcotics was significantly higher in group I (8/15) than group II (3/16), P=0.044;

Table 1

<table>
<thead>
<tr>
<th>Demographic characteristics of patients and type of surgery in Group I (Normal Saline) and Group II (Femoral nerve and Lateral Femoral cutaneous Nerve Block).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Saline Group I, n=15</td>
</tr>
<tr>
<td>Age, y, mean ± SD</td>
</tr>
<tr>
<td>Sex, male/female</td>
</tr>
<tr>
<td>ASA physical Status, number of patients, I/II/III</td>
</tr>
<tr>
<td>Operation Time in min, (mean ± SD)</td>
</tr>
<tr>
<td>Arthrosis/fracture</td>
</tr>
</tbody>
</table>

Abbreviations: y = years, m = minutes, NS = Non-Significant.

Table 2

<table>
<thead>
<tr>
<th>Comparison of anesthesia related complications in the 2 groups.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Saline Group I, n=15</td>
</tr>
<tr>
<td>Nausea</td>
</tr>
<tr>
<td>Vomiting</td>
</tr>
<tr>
<td>drowsiness</td>
</tr>
</tbody>
</table>

Abbreviations: NS = Non-Significant.

Table 3

<table>
<thead>
<tr>
<th>Dolosal consumption and time to first request for analgesia in the 2 groups.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Saline Group I, n=15</td>
</tr>
<tr>
<td>Nbr of patients who requested recue dolosal in first 48 hrs post-op</td>
</tr>
<tr>
<td>Dolosal consumption in 48 hours, mg, average</td>
</tr>
<tr>
<td>Time to the first request for analgesia when needed</td>
</tr>
</tbody>
</table>

Abbreviation: hrs=hours, S=Significant.
The total dose of dolosal used was significantly higher in group I (50 mg) than group II (9.375 mg), P=0.0058. Time to the first request for analgesia was significantly lower in group I (6hrs ± 5.12) as compared to Group II (21.3 hrs ± 23.1), P =0.043. (Table 3).

The visual analogue pain score in Group I (Normal Saline) at rest and at movement of the operated lower limb shows a sea-saw shape (Figure I). In group II (FN+LFCN Block) the visual analogue pain score graphs at rest and at movement of the operated limb shows a stable level of analgesia. (Figure I).

Discussion

Pain after hip surgery consists of pain located at the site of the incision, the femoral shaft and pain due to a reflexogenic contracture of the quadriceps musculature. Patients characterize this pain as moderate to severe during the first day after surgery. Improvement in management of this pain had a major impact on morbidity and mortality. Anatomically, the hip joint is innervated by several nerves, including the femoral nerve, the obturator nerve, the sciatic nerve and the superior gluteal nerve; also to note that the incisional site is innervated by the lateral femoral cutaneous nerve. As a result, performing peripheral nerve blockades for anaesthesia in hip surgery is complex. However, femoral nerve blockade alone have been shown to reduce postoperative pain and morphine consumption in previous studies. Its blockade had attracted interest based on the fact of the high success rate, its simplicity and the low risk of complications. The advantage of LFCN blockade to cover the surgical site-incision inducing pain added to the FN block blockade has not been examined before in a prospective randomized study.

One retrospective study, reported by Vanderbroek et al with multiple limitations concluded that patients undergoing primary hip arthroplasty had lower pain scores and consequently less opioid use when they have received FN and LFCN block added to the standard protocol for postoperative pain control regimen.

In our double blind randomized study, a combined single shot FN block (15 mL of bupivacaine 0.5%) with LFCN block (5 ml of bupivacaine 0.5 %) was added to a standard protocol of postoperative analgesia.

Fig. 1

Visual analogue pain score in Group I (Normal Saline) and Group II (Femoral nerve and Lateral Femoral cutaneous Nerve Block) in the first 24 hours postoperatively at rest and on moving the operated lower limb.

Abbreviation: VAS=Visual Analogue Score.
FEMORAL AND LATERAL CUTANEOUS NERVE BLOCK FOR HIP SURGERY

(Perfalgan 1g IV every 6 hours systematically and Dolosal 50 mg IM every 6 hours if needed). It resulted in a significant decrease in the number of patient who requested narcotic (dolosal) by 65 % (8 patients versus 3) as well as the consumption of dolosal in the first 24 hours postoperatively by 80 % (50mg versus 9,375mg) as compared to the control group. The time to the first request for a rescue narcotic is significantly prolonged in block group (6hrs versus 21 hrs) as compared to the control group. The results demonstrated the efficacy of FN and LFCN blockade in improving postoperative analgesia.

The VAS pain score was evaluated at rest and at movement of the surgical lower limb. At rest, patients of block group had a stable VAS score over the time, in contrast to the control group who showed a seasaw profile due to the need for rescue analgesia over the time. This demonstrated the efficacy of LFCN blockade in providing postoperative analgesia of the incisional area.

In our standard protocol, the single shot regimen and not the continuous nerve block with catheter, was adopted to permit an early rehabilitation without possible falls due to muscle weakness secondary to FN block. Moreover the use of ultrasound guidance allows a precise block with an amount of anesthetic solution (bupivacaine 0.5%, total of 20 mL) that does not produce systemic toxicity. To note that the type of hip surgery (osteosynthesis or arthroplasty) had no influence on the pain score or the total amount of narcotics used.

A limitation of this study was the performance of the block in the preoperative period and an impossibility to evaluate the success of the block due to the shortness of the time to start the surgery in the operating theater.

In conclusion, FN and LFCN block when added to the standard regimen for postoperative pain management after hip surgery had a benefit in decreasing pain scores as well as opioid consumption.
References:

BRIDION—For optimal neuromuscular blockade management and improved recovery

Predictable and complete reversal

- 98% of BRIDION patients recovered to a TOF* ratio of 0.9 from reappearance of T2 within 5 minutes1
- 97% of BRIDION patients recovered to a TOF* ratio of 0.9 from 1 to 2 PTCs* within 5 minutes1

Rapid reversal

- BRIDION rapidly reversed patients from reappearance of T2 in 1.4 minutes1
- BRIDION rapidly reversed patients from 1 to 2 PTCs in 2.7 minutes1

BRIDION is indicated for the reversal of neuromuscular blockade induced by rocuronium or vecuronium. In children and adolescents (aged 2-17 years), BRIDION is only recommended for routine reversal of moderate rocuronium-induced neuromuscular blockade1

Important safety information

BRIDION is not recommended in patients with severe renal impairment. Studies in patients with hepatic impairment have not been conducted and, therefore, patients with severe hepatic impairment should be treated with great caution. Caution should be exercised when administering BRIDION to pregnant women as no clinical data on exposed pregnancies are available.

If neuromuscular blockade is required within 24 hours of BRIDION administration, a non-iodinated neuromuscular blocking agent should be used instead of rocuronium or vecuronium. The most commonly reported adverse reactions were dysgeusia (metal or bitter taste) and anesthetic complications (movement, coughing, grunting, or retching on the endotracheal tube). In patients treated with BRIDION, a few cases of awareness were reported. The relation to BRIDION was uncertain. In a few individuals, allergic-like reactions (e.g., flushing, erythema without rash) following BRIDION were reported. Children should be prepared for the possibility of allergic reactions and have the necessary resuscitation. A trial of patients with a history of respiratory complications, bronchospasm was reported in 2 patients and a causal relationship could not be fully excluded. Volunteer studies have demonstrated a slight (17%-21%) prolongation of the prothrombin time (PT) and INR (up to 30 minutes); prolongation of the prothrombin time (PT) and INR is a part of thrombolytic therapy (PT/INR) with BRIDION; however, clinical studies have demonstrated no clinically relevant effect on postoperative bleeding complications with BRIDION alone or in combination with anticoagulants. As BRIDION has demonstrated an in vitro pharmacodynamic interaction with anticoagulants, caution should be exercised in patients on anticoagulation for a pre-existing or concomitant condition. This pharmacodynamic interaction is not clinically relevant for patients receiving routine postoperative prophylactic anticoagulation. Although formal interaction studies have not been conducted, drug interactions were observed in clinical trials. Pooled data suggest that clinically significant drug interactions are unlikely with the possible exceptions of tolbutamide, folic acid, and hormonal contraceptives.

Please see summary of product characteristics for full prescribing information.
PAJUNK®
Pioneering Medical Technology

TAP Block And InfiltraLong
For Effective Treatment Of Long And Deep Incisions

Sono Cannulas
For Single Shot UltraSound Guided Nerve Blocks

SonoSystem And SonoLong Curl
For UltraSound Guided Nerve Blocks

Sprotte® 2.G
The New Generation Dura Puncture In Minimum Time

SonoEye Ophtalmic Block
For Peribulbar And Retrobulbar Blocks Under Ultrasonic Monitoring

www.mediline-lb.com Tel:+961 1 697500
Question.

Your patient requires urgent pain medication. How can you administer this less invasively?

Answer.

Atomization spray
The spray atomizes drugs into a fine mist of particles (50-100 microns in size).¹

Malieable stylet
The malieable stylet allows 180° positioning of the nasal plug.

Accurate dosing
The syringe enables the accurate measurement of drugs to be delivered.

Pressure
High applied pressure ensures that drugs are atomized into a fine mist of particles through the tip of the plug.

Soft conical plug
The plug forms a seal with the nasal opening preventing expulsion of fluid.

Spray geometry
Spray cone with a wide 62.70° average spray angle and a 36.8mm average plume width.²

References:
PRINCIPLES OF PEDIATRIC ANESTHESIA AND CRITICAL CARE
The Fairmont Copley Plaza Boston
May 6-8, 2016

GUEST SPEAKERS
DEAN ANDROPULOS, MD, MHCM
CHARLES COTE, MD
KELSEY TAINSH
BRAIN TUMOR SURVIVOR AND MOTIVATIONAL SPEAKER

WORKSHOPS
Pediatric Airway (Included in tuition)
TEE
Regional Anesthesia
MOCA® SIMULATION COURSE

COURSE DIRECTORS:
Kirsten C. Odegard, MD
Mary Ellen McCann, MD, MPH
Janet Valicenti, CRNA
Bistra Vlassakova, MD

SAVE $75
Promo Code: PediatricAnesthesia75
Expires 1/31/16

Conference focused on pediatric anesthesia research, hot topics, challenges, risk management techniques, and interactive workshops
www.PediatricAnesthesiaConference.com