A CASE OF GRANISETRON ASSOCIATED INTRAOPERATIVE CARDIAC ARREST

MOHAMMED AL HARBI*, DERAR AL RIFAI**, HASSAN AL HABEEB***, FREDDIE WAMBI**, GEORGES GELDHOF**** AND VASSILIOS DIMITRIOU*****

We report a case of intraoperative severe bradycardia that resulted in asystole and cardiac arrest shortly after (<2 min) intravenous granisetron 1mg for postoperative nausea and vomiting prophylaxis, that occurred in a female patient who underwent an elective total thyroidectomy. After two cycles of cardiopulmonary resuscitation and defibrillation, spontaneous circulation and sinus rhythm returned successfully. Postoperatively, the patient was diagnosed with a drug-induced long QT syndrome. At the time of the event, granisetron was the only medication administered. Furthermore, there was no reason to suspect electrolyte abnormalities. We explore the association of the onset of severe sinus bradycardia with the intravenous administration of granisetron.

Keywords: Antiemetics, complications, cardiac arrest

Introduction

The 5 Hydroxytryptamine type 3 (5-HT3) serotonin receptor antagonists are widely used in the treatment of postoperative (PONV) and chemotherapy induced nausea and vomiting (CINV). Even though its clinical safety has been established in many trials, they have the ability to block human cardiac sodium and potassium channels which may cause adverse cardiac effects and may predispose to cardiac dysrhythmias1,2. Labeling for some of the currently approved 5-HT3 antagonists indicates the potential for cardiac adverse events, primarily prolongation of the QT interval but also other changes of electrocardiogram (ECG) intervals3,4.

Cardiac dysrhythmias have been reported with 5-HT3 antagonists during the perioperative period, especially with ondansetron and dolasetron including ventricular or supraventricular tachycardia, premature ventricular contractions, atrial fibrillation, coronary vasospasm with chest pain and intraoperative pulseless ventricular tachycardia5-10. Furthermore, similar adverse events have been reported in cancer patients under chemotherapy11,12.

* FRCPC, Assistant Professor, Department of Anesthesiology, King Saud University for Health Sciences, Deputy Chairman, Department of Anesthesia, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
** Consultant, Department of Anesthesia, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
*** Resident in Anesthesia, Department of Anesthesia, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
**** Chairman, Department of Anesthesiology, King Saud University for Health Sciences, Department of Anesthesia, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
***** Professor of Anesthesia, Consultant, Department of Anesthesia, King Abdulaziz Medical City, Riyadh, Saudi Arabia.

Corresponding author: Vassilios Dimitriou, Professor of Anesthesia, Consultant, Department of Anesthesia, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia, PO Box: 22490, Riyadh 11426, Phone: +9661180111 ext 19432, Email: vaskdimi58@gmail.com
Dr. Mohammed Al Harbi. E-mail address: harbimk@ngha.med.sa
Dr. Freddie Wambi. E-mail address: wambifr@ngha.med.sa
Dr. Georges Geldhof. E-mail address: georgesgeldhof@gmail.com
- There was no financial support (grant, equipment, drugs etc…
- Conflict of interest: There is no financial relationship between authors and commercial interests.
In October 2009, labeling of granisetron (Kytril; Roche Laboratories, Basel, Switzerland) was changed to include a warning for precautionary use in patients potentially vulnerable to QT prolongation. In 2010 and 2011, the US Food and Drug Administration (FDA) required the withdrawal of intravenous (IV) dolasetron for the treatment of CINV due to cardiac safety concerns and expanded warnings in labeling regarding potential cardiac safety issues with ondansetron and granisetron.

Although small clinical trials with IV granisetron have not found any significant changes in QT intervals, individual reports of QT prolongation have been published. It is important to note that concerning granisetron, a thorough QT study has not yet conducted. However, no published case reports of severe cardiac events were reported with granisetron as the suspect agent. We report a case of intraoperative severe bradycardia that resulted in asystole and cardiac arrest after IV granisetron 1mg for PONV prophylaxis, occurred in a female patient who underwent an elective total thyroidectomy.

Consent for publication

Patient has given written consent for publication

Case Description

A 50 year old morbidly obese female (104kg, 150cm, BMI 46.2), ASA II, was admitted to our tertiary university hospital for an elective total thyroidectomy. Past medical history included seven pregnancies, hyperthyroidism and psychosis diagnosed one year ago. Upon admission to the hospital, the patient reported no known medication allergies. At the time of first diagnosis, cardiac echocardiography showed normal and 12-lead electrocardiogram (ECG) showed mild left ventricular hypertrophy (LVH) and borderline QT prolongation (QTc 459ms). Initial daily drug therapy regimen included methimazole 30mg, propranolol 80mg and risperidone 4mg. Four months later the patient visited the pre-anesthesia clinic and was evaluated. Thyroid function and psychological status were normal. A 12-lead ECG showed similar borderline QT prolongation (QTc 452ms). Her daily therapy regimen included methimazole 15mg, propranolol 40mg and sulpiride 100mg.

On the day of surgery patient came to operating room without changes with preoperative evaluation. Induction in anesthesia included midazolam 1mg, fentanyl 100 mcg, propofol 200mg and rocuronium 60mg. During maintenance with oxygen, nitrous oxide and sevoflurane 2%, dexamethasone 8mg, morphine 5mg and paracetamol 1000mg were administered. Throughout surgery, the patient’s heart was in normal sinus rhythm. Towards the end of the procedure patient received IV granisetron 1mg for PONV prophylaxis. Then, in less than 2min patient developed severe sinus bradycardia (<30 beats/min). Atropine 0.6mg was given immediately and pushed with 20 ml of normal saline. Bradycardia resulted in asystole and cardiopulmonary resuscitation (CPR) was initiated immediately. After one cycle of CPR sinus rhythm presented for a few seconds and then converted to ventricular fibrillation (VF). One shock 200J delivered and a second cycle of CPR started and epinephrine 1mg was given. CPR resulted in return of spontaneous circulation and sinus rhythm. Total CPR duration was 6 minutes. Arterial blood gases showed: PH 7.221, PaCO2 61mmHg, PaO2 232 mmHg, Hb 13 g/dl, with normal blood sugar and electrolytes (Na+, K+, Ca++) within normal limits. A 12-lead ECG showed sinus rhythm and substantial QT prolongation (QTc 494ms). Patient was then extubated, recovered uneventfully and was transferred to cardiac ICU. Cardiac CT angiography showed mild non obstructive coronary artery disease and mild LVH. Cardiologists decided that the patient indicated a high likelihood of drug-induced long QT-syndrome (LQTS). One week later they proceeded with right ventricle intracardiac device implantation for secondary prevention for VF arrest and long QT. Transthoracic echocardiography with contrast showed only mild LVH and patient was discharged. About 3 months later 12-lead ECG showed sinus rhythm with 1st degree atrioventricular block and normal QT interval (QTc 381ms).

Discussion

It is clear that very shortly (<2min) after the IV administration of granisetron 1mg for PONV
prophylaxis, our patient developed severe sinus bradycardia which eventually resulted in asystole and cardiac arrest. To the best of our knowledge this is the first case with granisetron in a dose for PONV prophylaxis, to be associated with intraoperative cardiac arrest. However, we cannot conclusively establish granisetron as the cause. The patient was incidentally taking propranolol for her daily therapy regimen which probably contributed to cardiac conduction abnormalities and to sinus bradycardia. Additionally, the patient was in antipsychotic drug therapy with sulpiride, associated with QT prolongation17-19. This emphasizes the importance of drug-drug interactions in the perioperative setting2. However, at the time of the event, granisetron was the only medication administered. Furthermore, there was no reason to suspect electrolyte abnormalities in predisposing to this event. Nonetheless, it is logical in this case to explore the association of the onset of severe sinus bradycardia with the intravenous administration of granisetron. The non-significant past medical history, as well as the timing of administration of other medications, support our concern.

The QT interval is the ECG manifestation of ventricular depolarization and repolarization. The RR interval preceding the QT interval is measured for rate correction (QTc). Although there is no consensus about QTc normal values, most agree that QTc intervals <440 ms are clearly normal and intervals of 440-460 ms in men and 440-470 ms in women are considered borderline19,20. Preoperatively our patient presented a borderline QT prolongation (QTc 452ms), while in the immediate postoperative period experienced a substantial QT prolongation (QTc 494ms). However, recent study showed that postoperative QTc-interval prolongation is common21. Several perioperatively administered drugs were associated with a substantial QT-interval prolongation and drug-drug interactions appeared to be a major contributing factor to postoperative QTc-prolongation21. The authors emphasized that the exact cause of postoperative QTc-prolongation and its clinical relevance, remain unclear21.

Drug-induced long QT syndrome (LQTS) is characterized by acquired QT interval prolongation and increased risk of torsade de pointes (TdP)19,20. In our patient after the first cycle of CPR sinus rhythm appeared for a few seconds and then was converted to VF. However, there is no adequate evidence that TdP was an intermediate dysrhythmia. The fact that 3 months after the event our patient presented with normal QT interval (QTc 381ms) rather confirms a drug-induced LQTS. QT prolongation and TdP are the most common reasons pharmaceuticals are restricted from the US market22.

In our patient the exact cause of the onset of this severe intraoperative sinus bradycardia, which resulted in asystole is not clear. Multiple QT prolonging drugs (granisetron, propranolol and sulpiride) may be an evident explanation18. Granisetron has been shown to block human cardiac sodium channels, which may lead to clinically relevant sodium channel block. Sodium channel blockade is associated with QRS widening, which may predispose to cardiac dysrhythmias. Furthermore, granisetron possesses affinity for the potassium channels, which may prolong repolarization. The complexity of cardiovascular responses produced by 5-hydroxytryptamine, include heterogeneous, unpredictable and conflicting effects leading to bradycardia or tachycardia, hypotension or hypertension, and vasodilatation or vasoconstriction23. This has been explained by the capability of this monoamine to interact with different receptors in the central nervous system, the autonomic ganglia and postganglionic nerve endings, the vascular smooth muscle and endothelium, and the cardiac tissue23.

The prevailing point of view is that inhibition of 5-HT\textsubscript{3} receptors in the heart could lead to unopposed action of other serotonin receptors leading to tachyarrhythmias as described in the literature2-8. Postulated mechanism in animal studies, included inhibition of Bezold-Jarisch like cardiac reflex and coronary vasoconstriction23. However, this has not been yet established in humans. Actually, our patient experienced severe sinus bradycardia which resulted to cardiac arrest, instead of tachyarrythmia. Three other cases have been reported with severe sinus bradycardia (<30beats/min) after IV administration of ondansetron during induction in anesthesia, associated with respiratory arrest and loss of consciousness24-25. Theoretically, the inhibition of 5-HT\textsubscript{3} receptors may also lead to bradycardia, mediated by unopposed
activation of 5-HT(1A) receptors on the ground of drug-induced long QTS23.

It seems that so far we miss the whole picture of drug interactions with the perioperative use of the 5-HT3 antagonists. This means that further in depth research is required. It is important that anesthesiologists should be vigilant of rare but potentially life-threatening cardiovascular compromise induced by these medications. As cardiac dysrhythmias have been reported with 5-HT3 antagonists, it is inevitable that as their utilization in the perioperative setting increases, the frequency of such reports will increase.

References

BRIDION—optimal neuromuscular blockade management and improved recovery

Predictable and complete reversal

- 98% of BRIDION patients recovered to a TOF* ratio of 0.9 from reappearance of T1 within 5 minutes
- 97% of BRIDION patients recovered to a TOF* ratio of 0.9 from 1 to 2 PTCs within 5 minutes

Rapid reversal

- BRIDION rapidly reversed patients from reappearance of T1 in 1.4 minutes
- BRIDION rapidly reversed patients from 1 to 2 PTCs in 2.7 minutes

BRIDION is indicated for the reversal of neuromuscular blockade induced by rocuronium or vecuronium. In children and adolescents (aged 2-17 years), BRIDION is only recommended for routine reversal of moderate rocuronium-induced neuromuscular blockade.

Important safety information

BRIDION is not recommended in patients with severe renal impairment. Studies in patients with severe hepatic impairment have not been conducted and, therefore, patients with severe hepatic impairment should be treated with great caution. Caution should be exercised when administering BRIDION to pregnant women as no clinical data on exposed pregnancies are available.

If neuromuscular blockade is required within 24 hours of BRIDION administration, a neuromuscular blocking agent should be used instead of rocuronium or vecuronium. The most commonly reported adverse reactions were dysgeusia (oral or bitter taste) and anesthetic complications (movement, coughing, grinding, or twitching on the endotracheal tube). In patients treated with BRIDION, a few cases of awareness were reported. A few patients may experience postoperative nausea.

Please see summary of product characteristics for full prescribing information.
Pioneering Medical Technology

TAP Block And InfiltraLong
For Effective Treatment Of Long And Deep Incisions

Sono Cannulas
For Single Shot UltraSound Guided Nerve Blocks

SonoSystem And SonoLong Curl
For UltraSound Guided Nerve Blocks

Sprotte 2.0
The New Generation Dura Puncture In Minimum Time

SonoEye Ophthalmic Block
For Peribulbar And Retrobulbar Blocks Under Ultrasonic Monitoring

www.mediline-lb.com Tel:+961 1 697500
Question.
Your patient requires urgent pain medication. How can you administer this less invasively?

Answer.

LMA MAD Nasal™
Needle-free intranasal drug delivery device

Atomization spray
The spray atomizes drugs into a fine mist of particles (30-100 microns in size).¹

Soft conical plug
The plug forms a seal with the nasal opening preventing expulsion of fluid.

Malleable stylet
The malleable stylet allows 360° positioning of the nasal plug.

Accurate dosing
The syringe enables the accurate measurement of drugs to be delivered.

Pressure
High applied pressure ensures that drugs are atomized into a fine mist of particles through the tip of the plug.

Spray geometry
Spray cone with a wide 62.7° average spray angle and a 36.8mm average plume width.²

References:
PRINCIPLES OF PEDIATRIC ANESTHESIA AND CRITICAL CARE
The Fairmont Copley Plaza Boston
May 6-8, 2016

GUEST SPEAKERS
DEAN ANDROPOULOS, MD, MHCM
CHARLES COTE, MD
KELSEY TAINSH
BRAIN TUMOR SURVIVOR AND MOTIVATIONAL SPEAKER

WORKSHOPS
Pediatric Airway (Included in tuition)
TEE
Regional Anesthesia
MOCA® SIMULATION COURSE

COURSE DIRECTORS:
Kirsten C. Odegard, MD
Mary Ellen McCann, MD, MPH
Janet Valicenti, CRNA
Bistra Vlassakova, MD

SAVE $75
Promo Code: PediatricAnesthesia75
Expires 1/31/16

Conference focused on pediatric anesthesia research, hot topics, challenges, risk management techniques, and interactive workshops
www.PediatricAnesthesiaConference.com