ARTERIAL CANNULATION: SIMPLE SWAYING MANEUVER MAY BE AN ANSWER TO COUNTER FAILURE/COMPLICATION RATES

Deepak Gupta* and Hassan H. Amhaz**

Arterial cannulation is a commonly performed procedure in patients requiring hemodynamic monitoring in the perioperative period. Although not an exceedingly complex procedure, there can be an increase in cannulation failure rates and complications if simple maneuvers are ignored.

Firstly, the intima-media thickness of radial artery is approximately 0.3 mm\(^1\) while the inner luminal diameter of the radial artery is approximately 3 mm as measured by angiography at its ideal insertion point. This ideal insertion point is at least 10 mm proximal to the R-U line (the surface marking line drawn latero-medially across the radial-ulnar styloid processes)\(^2\) so that the bifurcation point of the radial artery can be avoided during cannulation. Secondly, while cannulating the radial artery, anesthesia care providers may use either the Seldinger or modified Seldinger technique\(^3\). With the Seldinger technique, the radial artery is punctured with a needle; after successful puncture, a separate non-integrated guidewire is threaded into the artery through the needle; over this in-situ guidewire, the catheter is slid over into the artery after removal of the needle. In the modified Seldinger technique (the most commonly used technique at our institution), the radial artery is punctured with a catheter-over-the-needle-over-the-integrated-wire assembly; successful needle puncturing the artery is appreciated by arterial blood flashback, then the guidewire is threaded into the artery through the needle, and subsequently once it is ensured that the guidewire has been threaded without any resistance into the arterial lumen, the catheter is slid over the needle-guidewire assembly.

Hereafter, the simple maneuver that is the focus of this letter is being explained based on the modified Seldinger technique for radial artery cannulation (with 4.45 cm long AK-04020, Integrated Seldinger technique Radial Artery Kit Version by ARROW® Arterial Products, Teleflex Incorporated, Morrisville, North Carolina, United States) [Fig. 1]. The described technique requires the swaying of the catheter-needle-guidewire assembly as a single unit and in that regards the sturdiness of the needle is apparently very essential to not allow the displacement of the assembly during the Swaying Maneuver.

* Department of Anesthesiology Wayne State University/Detroit Medical Center Detroit, Michigan, United States-Financial.
* M.D.
** M.D., M.S.

Corresponding Author: Dr. Deepak Gupta, Box No. 162, 3990 John R, Detroit, MI 48201, United States, Tel: 1-313-745-7233, Fax: 1-313-993-3889. E-mail: dgupta@med.wayne.edu
The basics underlying the Swaying Maneuver are simple. Per longitudinal section of an artery, it is always presumed that modified Seldinger technique cannulation can assume/follow just only one pathway after the arterial blood flashback has been visualized [Fig. 2]. However, when we change this two-dimensional viewpoint to a three-dimensional view, we realize that per transverse cross-sectional anatomy of the artery, the modified Seldinger technique can assume not one but three different pathways after the initial flashback. To better understand and explain these three different pathways, we need to divide the circular "walls" of the artery into (a) anterior "wall" meaning anterior-quarter of circumference that is nearest to the skin and is intentionally punctured for arterial cannulation, (b) posterior "wall" meaning posterior-quarter of circumference that is farthest away from the skin and is intentionally avoided unless the proceduralist intends to trans-fix the artery with transarterial through-and-through puncture of an artery, and (c) side "walls" meaning medial-lateral-quarters (two in number) of circumference that have never been discussed much but are the focus of this current letter.

As visualized in the transverse cross-section of an artery [Fig. 2], the needle-wire assembly can be in the center where the antero-posterior height/distance is maximum as it is equal to the inner luminal diameter; or it can be closer to side "walls" (either the medial one or the lateral one) wherein the antero-posterior height/distance will be less than the inner luminal diameter. This miniscule decrease in height/distance becomes significant when advancing the guidewire followed by the catheter as even the 3 mm inner luminal diameter in itself is very small distance at the center for manipulations of radial artery cannulation assembly. For this reason, when there is a arterial blood flashback, the catheter-needle-guidewire assembly has to be tilted from its original insertion angle (typically a 45° angle) at the time of arterial puncture to less than a 20° angle at the time of threading the guidewire into the arterial lumen so as to align the advancing guidewire along the longitudinal axis of the arterial lumen. Despite all this, the catheter tip may not have reached in the arterial lumen (stuck either within the arterial wall or outside the arterial wall) because of 0.3 mm intima-media thickness and at least 2 mm long bevel tip of 22-gauge-needle extending beyond the 20-gauge-
catheter tip [Fig. 3]. If the arterial puncture does not occur in the center (something that is beyond operator's control when using palpation method alone), the probability of reduced arterial blood flashback when tilting from an approximate 45° angle to less than a 20° degree angle increases as the anterio-posterior height/distance decreases as we move away from the center. Henceforth, the probability of the non-advancement of guidewire in spite of arterial blood flashback also increases; and herein if guidewire is forced further despite the resistance, the "stiff" guidewire can create false lumen within the arterial wall, can shear the catheter and can cause the non-functional/complicated arterial wall cannulation site.

The Swaying Maneuver is explained as follows: Firstly, it has to be ensured that the needle-bevel indicator on the catheter-needle-guidewire assembly indicates an anterior-facing bevel [Figure 1]. Then, once the assembly has punctured the arterial wall (as confirmed by arterial blood flashback) at a 45° angle to the skin, the angle is slowly reduced to an approximate angle of 20°. If the flashback is sustained during this reduction of angle, the needle is most likely aligned in the center and the guidewire will easily advance into the arterial lumen. If the flashback stops or slows while reducing the assembly’s angle, the needle bevel has likely apposed the anterior "wall" of the artery. This can be corrected by stopping any further reduction of the angle and rather a slight increase in the angle to a point to ensure the return of the sustained and good arterial blood flashback. At this point, if advancement of the guidewire is smooth, then the assembly is likely to be still relatively near the center of the artery and arterial cannulation should follow without difficulty. However, the scenario that’s commonly encountered is when there is a arterial blood flashback and yet the guidewire fails to advance despite performing the above mentioned maneuvers. In this case, the needle-guidewire assembly is in such close proximity to the medial or lateral "wall" of the artery that swaying of the entire assembly in the medio-lateral plane/direction must be done while maintaining the current arterial entry angle in the anterio-posterior plane. Whether this proximity is to the medial "wall" or lateral "wall" cannot be asserted unless the operator is confident that while palpating the artery, he/she had punctured the artery from the lateral side or the medial side of the palpable arterial pulsations. Irrespective of the operator's perceptions, if there is a reduction or cessation of the arterial blood flashback when swaying the assembly medially, then the assembly is likely closer to the medial "wall" of the artery and lateral redirection is required for re-negotiation of guidewire's advancement into the artery's center. Conversely, reduction or cessation of flashback when swayed laterally will indicate apposition to the lateral "wall" and hence will require medial redirection of the assembly. Once there is resumption of sustained and good arterial blood flashback, the guidewire should be advanced as by then, its advancement direction would have been re-negotiated centrally by the Swaying Maneuver allowing for successful arterial cannulation [Fig. 4].

In summary, when using the modified Seldinger technique for arterial cannulation, it is critical to understand the relationship among the catheter-needle-guidewire assembly, changes in angle, adequacy of flashback, and ease of guidewire advancement to help construct a mental image of the arterial catheter’s position within the spatial coordinates of the artery being cannulated. Using the described Swaying Maneuver adds the final spatial clue that will allow for the central redirection and smooth advancement of the guidewire resulting in successful cannulation of the artery.
References

BRIDION—for **optimal neuromuscular blockade management and improved recovery**

Predictable and complete reversal
- 98% of BRIDION patients recovered to a TOF® ratio of 0.9 from reappearance of T₂ within 5 minutes²
- 97% of BRIDION patients recovered to a TOF® ratio of 0.9 from 1 to 2 PTCs † within 5 minutes³

Rapid reversal
- BRIDION rapidly reversed patients from reappearance of T₂ ‡ in 1.4 minutes²
- BRIDION rapidly reversed patients from 1 to 2 PTCs † in 2.7 minutes³

BRIDION is indicated for the reversal of neuromuscular blockade induced by rocuronium or vecuronium. In children and adolescents (aged 2-17 years), BRIDION is only recommended for routine reversal of moderate rocuronium-induced neuromuscular blockade.

Important safety information

BRIDION is not recommended in patients with severe renal impairment. Studies in patients with hepatic impairment have not been conducted and, therefore, patients with severe hepatic impairment should be treated with great caution. Caution should be exercised when administering BRIDION to pregnant women as no clinical data on exposed pregnancies are available.

BRIDION has not been investigated in patients receiving rocuronium or vecuronium in the Intensive Care Unit (ICU) setting.

If neuromuscular blockade is required within 24 hours of BRIDION administration, a nonreversal neuromuscular blocking agent should be used instead of rocuronium or vecuronium. The most commonly reported adverse reactions were dysgeusia (metal or bitter taste) and anesthetic complications (movement, coughing, grunting, or suffocation of the endotracheal tube). In patients treated with BRIDION, a few cases of awareness were reported. The relation to BRIDION was uncertain. In a few individuals, allergic-like reactions (i.e., flushing, erythematous rash) following BRIDION were reported. Clinicians should be prepared for the possibility of allergic reactions and take the necessary precautions. In a trial of patients with a history of pulmonary complications, bronchoscopy was reported in 2 patients and a causal relationship could not be fully excluded.

Volunteer studies have demonstrated a slight (13%-22%) and transient (<30 minutes) prolongation of the prothrombin time/activated partial thromboplastin time (PT/aPTT) with BRIDION; however, clinical studies have demonstrated no clinically relevant effect on peri- or postoperative bleeding complications with BRIDION alone or in combination with anticoagulants. As BRIDION has demonstrated an in vitro pharmacodynamic interaction with anticoagulants, caution should be exercised in patients on anticoagulation for a pre-existing or concomitant condition. This pharmacodynamic interaction is not clinically relevant for patients receiving routine postoperative prophylactic anticoagulation. Although formal interaction studies have not been conducted, no drug interactions were observed in clinical trials. Preclinical data suggest that clinically significant drug interactions are unlikely with the possible exceptions of toremifene, fusidic acid, and hormonal contraceptives.

† Train-of-four
‡ Post-tetanic count
§ Second twitch

REFERENCES:
1. BRIDION Summary of Product Characteristics (SPC)

Please see summary of product characteristics for full prescribing information.

© 2010 Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Whitehouse Station, NJ, USA. All rights reserved. 05-2013-BRID-2011-LEVANT-1196-J
TAP Block And InfiltraLong
For Effective Treatment
Of Long And Deep Incisions

Sono Cannulas
For Single Shot UltraSound
Guided Nerve Blocks

SonoSystem And SonoLong Curl
For UltraSound Guided Nerve Blocks

Sprotte® 2.G
The New Generation
Dura Puncture In Minimum Time

SonoEye Ophtalmic Block
For Peribulbar And Retrobulbar
Blocks Under Ultrasonic Monitoring
Question.
Your patient requires urgent pain medication. How can you administer this less invasively?

Answer.

References:
16th World Congress of Anaesthesiologists
28 August – 2 September 2016
Hong Kong Convention and Exhibition Centre

SAVE THE DATE

Take the opportunity to represent your country at the 16th World Congress of Anaesthesiologists being held in the vibrant city of Hong Kong from 28 August to 2 September, 2016.

WCA 2016 will again prove to be a truly international event that covers the varied fields in anaesthesiology and its sub-specialities. The congress will once again:
- Showcase the latest research and findings in anaesthesia, pain medicine and intensive care
- Provide the benchmark for best practice
- Provide many opportunities to meet and discuss hot topics with the experts
- Encourage you to make new friends and learn from each other

Join the world’s leading anaesthesiologists as they discuss international issues in the following areas:

- Ambulatory
- Arts and Humanities
- Cancer
- Circulation
- Education and Development
- Intensive Care
- Neuroscience
- Obesity and Sleep Medicine
- Obstetric
- Paediatric
- Perioperative Medicine
- Pharmacology
- Professional Practice
- Regional
- Research and Publication
- Respiration and Airway
- Safety and Quality
- Technology

www.WCA2016.com
It’s like flying business class and paying coach fare.

In an uncertain world where perioperative care is increasingly complex, uptime is critical. GE’s anesthesia portfolio is known for dependable quality and a commitment to reliable performance that helps reduce operational costs long after the point of purchase. Today, GE Healthcare is changing the game and redefining affordable performance for the masses. No compromises. No boundaries.

Carestation 600 Series...It’s all within reach.

gemhealthcare.com

© 2015 General Electric Company - All rights reserved.
GE and GE Monogram are trademarks of General Electric Company.
SEPTEMBER 10-11, 2016
WEEKEND SEDATION CONFERENCE
Expanding All Horizons

FRIDAY, SEPTEMBER 9, 2016
FULL-DAY SEDATION SYMPOSIUM
The Fundamentals Of Sedation:
Reviewing The Basics - Bridging The Specialties

FULL-DAY PEDIATRIC SEDATION SIMULATION WORKSHOPS

COURSE DIRECTOR
KEIRA P. MASON, MD
DIRECTOR, FUNDAMENTALS OF SEDATION SYMPOSIUM
MARK G. ROBACK, MD
DIRECTOR, SEDATION SIMULATION WORKSHOPS
JAMES FEHR, MD

KEYNOTE SPEAKERS

J.R. MARTINEZ
BEST-SELLING AUTHOR
Survival, Strength and Spirit

STEVEN SHAFER, MD
PROFESSOR OF ANESTHESIOLOGY
Michael Jackson, Murder, Mayhem and Mystery: The Propofol Quandary

STEWART L. COHEN, ESQ.
A Lawyers Review of Critical Sedation Related Medical Malpractice Cases

ABSTRACTS DEADLINE
JULY 1, 2016

www.PediatricSedationConference.com